What is Hertz (Hz)?
The Hertz (symbol: Hz) is the unit of frequency in the SI and is defined as one cycle per second. The hertz is an SI derived unit whose expression in terms of SI base units is s-1, meaning that one hertz is the reciprocal of one second. It is named after Heinrich Rudolf Hertz (1857-1894), the first person to provide conclusive proof of the existence of electromagnetic waves. Hertz are commonly expressed in multiples: kilohertz (103Hz, kHz), megahertz (106Hz, MHz), gigahertz (109Hz, GHz), teraherz (1012Hz, THz).
Some of the unit’s most common use are in the description of sine waves and musical tones, particularly those used I radio – and audio-related applications. It is also used to describe the clock speeds at which computers and other electronics are driven. The units are sometimes also used as a representation of the energy of a photon, via the Planck relation E=hv, where E is the photon’s energy, v is the frequency, and the proportionality constant h is Planck’s constant.
Definition
The hertz is defined as one cycle per second. The international Committee for Weights and Measures defined the second as “the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium-133 atom” and then adds:” It follows that the hyperfine splitting in the ground state of the caesium 133 atom is exactly 9 192 631 770 hertz, v (hfs Cs) = 9 192 631 770 Hz.” The dimension of the unit hertz is 1/time (1/T). Expressed in base SI units, the unit is 1/second (1/s). Problems can arise because the unit of angular measure (radian) is sometimes omitted in SI.
In English, “hertz” is also used as the plural form. As an SI unit, Hz can be prefixed; commonly used multiples are kHz kilohertz (103Hz, kHz), megahertz (106Hz, MHz), gigahertz (109Hz, GHz), teraherz (1012Hz, THz). One hertz simply means “one cycle per second” (typically that which is being counted is complete cycle); 100Hz means “one hundred cycles per second”, and so on. The unit may be applied to any periodic event – for example, a clock might be said to tick at 1Hz, or a human heart might be said to beat at 1.2Hz.
The occurrence rate of aperiodic or stochastic events is expressed in reciprocal second or inverse second (1/s or s−1) in general or, in the specific case of radioactive decay, in becquerels. Whereas 1 Hz is one cycle per second, 1 Bq is one aperiodic radionuclide event per second.
Even though angular velocity, angular frequency and the unit hertz all have the dimension 1/T, angular velocity and angular frequency are not expressed in hertz, but rather in an appropriate angular unit such as the radian per second. Thus, a disc rotating at 60 revolutions per minute (rpm) is said to be rotating at either 2π rad/s or 1 Hz, where the former measures the angular velocity and the latter reflects the number of complete revolutions per second. The conversion between a frequency f measured in hertz and an angular velocity ω measured in radians per second is
ω = 2πf and f = ω/2π
The hertz is named after Heinrich Hertz. As with every SI unit named for a person, its symbol starts with an upper case letter (Hz), but when written in full it follows the rules for capitalization of a common noun; i.e., “hertz” becomes capitalized at the beginning of a sentence and in titles, but is otherwise in lower case.
Applications
- Vibration: Sound is a traveling longitudinal wave which is an oscillation of pressure. Humans perceive frequency of sound waves as pitch. Each musical note corresponds to a particular frequency which can be measured in hertz. An infant’s ear is able to perceive frequencies ranging from 20 Hz to 20000 Hz; the average adult human can hear sounds between 20 Hz and 16000 Hz. The range of ultrasound, infrasound and other physical vibrations, such as molecular and atomic vibrations extend from a few femtohertz into the terahertz range and beyond.
- Electromagnetic radiation: Electromagnetic radiation is often described by its frequency—the number of oscillations of the perpendicular electric and magnetic fields per second—expressed in hertz. Radio frequency radiation is usually measured in kilohertz (kHz), megahertz (MHz), or gigahertz (GHz). Light is electromagnetic radiation that is even higher in frequency, and has frequencies in the range of tens (infrared) to thousands (ultraviolet) of terahertz. Electromagnetic radiation with frequencies in the low terahertz range (intermediate between those of the highest normally usable radio frequencies and long-wave infrared light) is often called terahertz radiation. Even higher frequencies exist, such as that of gamma rays, which can be measured in exahertz (EHz). (For historical reasons, the frequencies of light and higher frequency electromagnetic radiation are more commonly specified in terms of their wavelengths or photon energies: for a more detailed treatment of this and the above frequency ranges, see electromagnetic spectrum.)
- Computers: In computers, most central processing units (CPU) are labeled in terms of their clock rate expressed in megahertz (106 Hz) or gigahertz (109 Hz). This specification refers to the frequency of the CPU’s master clock signal. This signal is a square wave, which is an electrical voltage that switches between low and high logic values at regular intervals. As the hertz has become the primary unit of measurement accepted by the general populace to determine the performance of a CPU, many experts have criticized this approach, which they claim is an easily manipulable benchmark. Some processors use multiple clock periods to perform a single operation, while others can perform multiple operations in a single cycle. For personal computers, CPU clock speeds have ranged from approximately 1 MHz in the late 1970s (Atari, Commodore, Apple computers) to up to 6 GHz in IBM Power microprocessors. Various computer buses, such as the front-side bus connecting the CPU and northbridge, also operate at various frequencies in the megahertz range.