Wide Area Network (WAN) is a long-distance communications network that covers a wide geographic area, spanning regions, countries, or even the world.

However, in terms of the application of communication protocols and concepts, it may be best to view WANs as computer networking technologies used to transmit data over long distances, and between different networks. This distinction stems from the fact that common local area network (LAN) technologies operating at lower layers of the OSI model (such as the forms of Ethernet or Wi-Fi) are often designed for physically proximal networks, and thus cannot transmit data over tens, hundreds, or even thousands of miles or kilometers.

WANs are used to connect LANs and other types of networks together so that users and computers in one location can communicate with users and computers in other locations. Many WANs are built for one particular organization and are private. Others, built by Internet service providers, provide connections from an organization’s LAN to the Internet.

WANs are often built using leased lines. At each end of the leased line, a router connects the LAN on one side with a second router within the LAN on the other. Because leased lines can be very expensive, instead of using leased lines, WANs can also be built using less costly circuit switching or packet switching methods. Network protocols including TCP/IP deliver transport and addressing functions. Protocols including Packet over SONET/SDH, Multiprotocol Label Switching (MPLS), Asynchronous Transfer Mode (ATM) and Frame Relay are often used by service providers to deliver the links that are used in WANs.

The standard routing protocols for Ethernet (MII and RMII) PCB are compatible with 10Base-T and 100Base-TX, although similar routing standards are designed for 1 Gbps and higher data rates (GMII, RGMII, SGMII, QSGMII). Routing uses 50/100 Ohm single/differential impedance, requiring impedance controlled routing over a ground plane. All routes within this scheme should be placed on a single layer with precise length matching. Next we need to consider routing between different chips in the system, and to the connectors. MADPCB is committed to providing high speed Ethernet PCB services, including it’s board design, fabrication and assembly.