What’s Phys­ical Vapor Depos­ition (PVD)?

 

The term Phys­ical Vapor Depos­ition (PVD), sometimes called Physical Vapor Transport (PVT), which covers spe­cific pro­cesses used in thin film tech­no­logy. In all cases, it refers to vacuum-based coat­ing pro­cesses that use phys­ical meth­ods to deposit thin films on a sub­strate, like ceramic substrates in Ceramic PCB manufacturing.

In all PVD pro­cesses, the mater­ial from which the thin film will be pro­duced is ini­tially in solid form and nor­mally loc­ated some­where in the pro­cess cham­ber, e.g. at the tar­get in sput­ter­ing. Vari­ous meth­ods are used to vapor­ize the mater­ial (for example, using a short, power­ful laser pulse, with an arc, or by ion or elec­tron bom­bard­ment) which then con­denses in the form of a thin film on the sub­strate sur­face.

In thermal vapor depos­ition, the mater­ial that pro­duces the film is heated by an elec­tric heater until it is released into the gas phase. Molecu­lar beam epi­taxy and ion beam sput­ter­ing depos­ition are also coun­ted among the group of PVD meth­ods. The res­ult­ing films are extremely pure and very uni­form. They also adhere excel­lently to the sub­strate. PVD coat­ings offer an envir­on­ment­ally friendly altern­at­ive to the con­ven­tional elec­tro­chem­ical pro­cesses for many applic­a­tions.

PVD describes a variety of vacuum deposition methods which can be used to produce thin films and coatings. PVD is characterized by a process in which the material goes from a condensed phase to a vapor phase and then back to a thin film condensed phase. The most common PVD processes are sputtering and evaporation. PVD is used in the manufacture of items which require thin films for mechanical, optical, chemical or electronic functions. Examples include semiconductor devices such as thin film solar panels, aluminized PET film for food packaging and balloons, and titanium nitride (TiN) (coated cutting tools for metalworking. Besides physical vapor deposition tools for fabrication, special smaller tools (mainly for scientific purposes) have been developed.

 

PVD Thin Film Technology: Sputtering

 

In thin film Ceramic PCB manufacturing, DC magnetic sputtering is a process finished in PVD or PVT line.

DC Magnetron Sputtering Ceramic PCB

DC Magnetron Sputtering Ceramic PCB

 

Advantages

  • PVD coatings are sometimes harder and more corrosion-resistant than coatings applied by the electroplating process. Most coatings have high temperature and good impact strength, excellent abrasion resistance and are so durable that protective topcoats are rarely necessary.
  • Ability to utilize virtually any type of inorganic and some organic coating materials on an equally diverse group of substrates and surfaces using a wide variety of finishes.
  • More environmentally friendly than traditional coating processes such as electroplating and painting.[citation needed]
  • More than one technique can be used to deposit a given film.

Disadvantages

  • Specific technologies can impose constraints; for example, the line-of-sight transfer is typical of most PVD coating techniques, however, some methods allow full coverage of complex geometries.
  • Some PVD technologies typically operate at very high temperatures and vacuums, requiring special attention by operating personnel.
  • Requires a cooling water system to dissipate large heat loads.